2,433 research outputs found

    Identifying capacitive and inductive loss in lumped element superconducting hybrid titanium nitride/aluminum resonators

    Full text link
    We present a method to systematically locate and extract capacitive and inductive losses in superconducting resonators at microwave frequencies by use of mixed-material, lumped element devices. In these devices, ultra-low loss titanium nitride was progressively replaced with aluminum in the inter-digitated capacitor and meandered inductor elements. By measuring the power dependent loss at 50 mK as the Al-TiN fraction in each element is increased, we find that at low electric field, i.e. in the single photon limit, the loss is two level system in nature and is correlated with the amount of Al capacitance rather than the Al inductance. In the high electric field limit, the remaining loss is linearly related to the product of the Al area times its inductance and is likely due to quasiparticles generated by stray radiation. At elevated temperature, additional loss is correlated with the amount of Al in the inductance, with a power independent TiN-Al interface loss term that exponentially decreases as the temperature is reduced. The TiN-Al interface loss is vanishingly small at the 50 mK base temperature.Comment: 10 pages, 5 figure

    Coherence in a transmon qubit with epitaxial tunnel junctions

    Full text link
    We developed transmon qubits based on epitaxial tunnel junctions and interdigitated capacitors. This multileveled qubit, patterned by use of all-optical lithography, is a step towards scalable qubits with a high integration density. The relaxation time T1 is .72-.86mu sec and the ensemble dephasing time T2 is slightly larger than T1. The dephasing time T2 (1.36mu sec) is nearly energy-relaxation-limited. Qubit spectroscopy yields weaker level splitting than observed in qubits with amorphous barriers in equivalent-size junctions. The qubit's inferred microwave loss closely matches the weighted losses of the individual elements (junction, wiring dielectric, and interdigitated capacitor), determined by independent resonator measurements

    Polycation stabilization of graphene suspensions

    Get PDF
    Graphene is a leading contender for the next-generation electronic devices. We report a method to produce graphene membranes in the solution phase using polymeric imidazolium salts as a transferring medium. Graphene membranes were reduced from graphene oxides by hydrazine in the presence of the polyelectrolyte which is found to be a stable and homogeneous dispersion for the resulting graphene in the aqueous solution. A simple device with gold contacts on both sides was fabricated in order to observe the electronic properties

    Cambios en los loops de las ondas P del vectocardiograma tras el aislamiento de las venas pulmonares

    Full text link
    [ES] La fibrilación auricular es la arritmia más frecuente en la práctica clínica. Además de los tratamientos antiarrítmicos, el aislamiento de las venas pulmonares mediante ablación por catéter es uno de los tratamientos utilizados acorde a las guías clínicas para ayudar a mantener el ritmo sinusal de forma indefinida en el paciente. El propósito de este estudio es analizar cómo dicho procedimiento afecta a los patrones de conducción eléctrica en las aurículas, y cómo estos se ven modificados en los registros electrocardiográficos registrados al paciente. Para ello, se ha comparado la morfología de las ondas P de los loops extraídos de los vectocardiogramas calculados a partir del electrocardiograma de superficie, antes y después del procedimiento en pacientes con fibrilación auricular paroxística. Estos pacientes tienen episodios autolimitados, permaneciendo gran parte del tiempo en ritmo sinusal y sin un alto grado de evolución de la arritmia. El primer y segundo autovalor de los loops, así como una medida de la redondez de los mismos señalaron cambios significativos tras el procedimiento, mostrando que el aislamiento de las venas pulmonares induce cambios morfológicos en los loops de las ondas P.N. Ortigosa agradece el apoyo del Ministerio de Ciencia, Innovación y Universidades en el marco del Programa Estatal de Promoción del Talento y su Empleabilidad en I+D+i -Subprograma Estatal de Movilidad- con la beca CAS19/00168, de la Generalitat Valenciana con el proyecto Prometeo/2017/102 y del MINECO con el proyecto MTM2016-76647-P.Ortigosa, N.; Cano, O.; Sandberg, F. (2020). Cambios en los loops de las ondas P del vectocardiograma tras el aislamiento de las venas pulmonares. Sociedad Española de Ingeniería Biomédica. 101-104. http://hdl.handle.net/10251/178266S10110

    Navigability is a Robust Property

    Full text link
    The Small World phenomenon has inspired researchers across a number of fields. A breakthrough in its understanding was made by Kleinberg who introduced Rank Based Augmentation (RBA): add to each vertex independently an arc to a random destination selected from a carefully crafted probability distribution. Kleinberg proved that RBA makes many networks navigable, i.e., it allows greedy routing to successfully deliver messages between any two vertices in a polylogarithmic number of steps. We prove that navigability is an inherent property of many random networks, arising without coordination, or even independence assumptions

    A titanium-nitride near-infrared kinetic inductance photon-counting detector and its anomalous electrodynamics

    Get PDF
    We demonstrate single-photon counting at 1550 nm with titanium-nitride (TiN) microwave kinetic inductance detectors. Energy resolution of 0.4 eV and arrival-time resolution of 1.2 microseconds are achieved. 0-, 1-, 2-photon events are resolved and shown to follow Poisson statistics. We find that the temperature-dependent frequency shift deviates from the Mattis-Bardeen theory, and the dissipation response shows a shorter decay time than the frequency response at low temperatures. We suggest that the observed anomalous electrodynamics may be related to quasiparticle traps or subgap states in the disordered TiN films. Finally, the electron density-of-states is derived from the pulse response.Comment: 4 pages, 3 figure

    NASC-seq monitors RNA synthesis in single cells.

    Get PDF
    Sequencing of newly synthesised RNA can monitor transcriptional dynamics with great sensitivity and high temporal resolution, but is currently restricted to populations of cells. Here, we develop new transcriptome alkylation-dependent single-cell RNA sequencing (NASC-seq), to monitor newly synthesised and pre-existing RNA simultaneously in single cells. We validate the method on pre-labelled RNA, and by demonstrating that more newly synthesised RNA was detected for genes with known high mRNA turnover. Monitoring RNA synthesis during Jurkat T-cell activation with NASC-seq reveals both rapidly up- and down-regulated genes, and that induced genes are almost exclusively detected as newly transcribed. Moreover, the newly synthesised and pre-existing transcriptomes after T-cell activation are distinct, confirming that NASC-seq simultaneously measures gene expression corresponding to two time points in single cells. Altogether, NASC-seq enables precise temporal monitoring of RNA synthesis at single-cell resolution during homoeostasis, perturbation responses and cellular differentiation

    Theoretical Properties of Projection Based Multilayer Perceptrons with Functional Inputs

    Get PDF
    Many real world data are sampled functions. As shown by Functional Data Analysis (FDA) methods, spectra, time series, images, gesture recognition data, etc. can be processed more efficiently if their functional nature is taken into account during the data analysis process. This is done by extending standard data analysis methods so that they can apply to functional inputs. A general way to achieve this goal is to compute projections of the functional data onto a finite dimensional sub-space of the functional space. The coordinates of the data on a basis of this sub-space provide standard vector representations of the functions. The obtained vectors can be processed by any standard method. In our previous work, this general approach has been used to define projection based Multilayer Perceptrons (MLPs) with functional inputs. We study in this paper important theoretical properties of the proposed model. We show in particular that MLPs with functional inputs are universal approximators: they can approximate to arbitrary accuracy any continuous mapping from a compact sub-space of a functional space to R. Moreover, we provide a consistency result that shows that any mapping from a functional space to R can be learned thanks to examples by a projection based MLP: the generalization mean square error of the MLP decreases to the smallest possible mean square error on the data when the number of examples goes to infinity
    corecore